Цилиндрические координаты - ορισμός. Τι είναι το Цилиндрические координаты
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Цилиндрические координаты - ορισμός

Проективные координаты; Однородные координаты

ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ      
точки М , три числа r, ?, z, связанные с декартовыми координатами x, y, z этой точки формулами:x = rcosz,y = rsinz,z = z.
Цилиндрические координаты      

точки М, три числа r, θ, z, характеризующие положение точки в пространстве (см. рис.). Наименование Ц. к. связано с тем, что координатная поверхность (см. Координаты) r = const является цилиндром, образующие которого параллельны Oz. Ц. к. и прямоугольные координаты х, у, z точки М связаны соотношениями: х = rcosθ, у = rsinθ, z = z.

К ст. Цилиндрические координаты.

Цилиндрические параболические координаты         
  • Координатные поверхности в координатах параболического цилиндра.
Цилиндрические параболические координаты (координаты параболического цилиндра) (u,\;v,\;z) — система координат, обобщающая параболические координаты на трёхмерный случай путём добавления третьей (декартовой) координаты \ z, то есть аппликаты.

Βικιπαίδεια

Однородная система координат

Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.

Однородные координаты обладают тем свойством, что определяемый ими объект не меняется при умножении всех координат на одно и то же ненулевое число. Из-за этого количество координат, необходимое для представления точек, всегда на одну больше, чем размерность пространства, в котором эти координаты используются. Например, для представления точки на прямой в одномерном пространстве необходимы 2 координаты и 3 координаты для представления точки на плоскости в двумерном пространстве. В однородных координатах возможно представить даже точки, находящиеся в бесконечности.

Введены Плюккером в качестве аналитического подхода к принципу двойственности Жергонна — Понселе.

Τι είναι ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ - ορισμός